Chapter 1 - Building Abstraction with Functions
1.1 The Elements of Programming
Exercise 1.1
Print out the given sequence of statements:
console.log("\n==========Exercise 1.1==========");console.log("10: ", 10);console.log("5 + 3 + 4: ", 5 + 3 + 4);console.log("9 - 1: ", 9 - 1);console.log("6 / 2: ", 6 / 2);console.log("2 * 4 + (4 - 6): ", 2 * 4 + (4 - 6));
const a = 3;const b = a + 1;console.log("const a = 3");console.log("const b = a + 1: ", b);console.log("a + b + a * b: ", a + b + a * b);console.log("a === b: ", a === b);console.log("b > a && b < a * b ? b : a ", b > a && b < a * b ? b : a);console.log( "a === 4 ? 6 : b === 4 ? 6 + 7 + a : 25", a === 4 ? 6 : b === 4 ? 6 + 7 + a : 25);console.log("2 + (b > a ? b : a) ", 2 + (b > a ? b : a));console.log( "(a > b ? a : a < b ? b : -1) * (a + 1) ", (a > b ? a : a < b ? b : -1) * (a + 1));
output:
==========Exercise 1.1==========10: 105 + 3 + 4: 129 - 1: 86 / 2: 32 * 4 + (4 - 6): 6const a = 3const b = a + 1: 4a + b + a * b: 19a === b: falseb > a && b < a * b ? b : a 4a === 4 ? 6 : b === 4 ? 6 + 7 + a : 25 162 + (b > a ? b : a) 6(a > b ? a : a < b ? b : -1) * (a + 1) 16
Exercise 1.2
Translate the following expression into JavaScript:
console.log("\n==========Exercise 1.2==========");function eval() { return (5 + 4 + (2 - (3 - (6 + 4 / 5)))) / (3 * (6 - 2) * (2 - 7));}console.log("Evaluation result: ", eval().toFixed(4));
output:
==========Exercise 1.2==========Evaluation result: -0.2467
Exercise 1.3
Declare a function that takes three numbers as arguments and returns the sum of the squares of the two larger number:
console.log("\n==========Exercise 1.3==========");function squareSumLargerTwo(num1, num2, num3) { if (num2 > num1) [num1, num2] = [num2, num1]; if (num3 >= num1) [num1, num2] = [num3, num1]; else if (num3 >= num2) num2 = num3; return num1 ** 2 + num2 ** 2;}
console.log( "The sum of the square of two larger numbers in [10, 2, 3]: ", squareSumLargerTwo(10, 2, 3));
output:
==========Exercise 1.3==========The sum of the square of two larger numbers in [10, 2, 3]: 109
Exercise 1.4
Describe the behavior of a_plus_abs_b
provided in the book:
Exercise 1.5
Evaluate Ben Bitdiddle’s function in both applicative-order and normal-order.
Exercise 1.6
Alyssa P. Hacker proposed an “optimized” function of the square root iteration function provided in the book:
function conditional(predicate, then_clause, else_clause) { return predicate ? then_clause : else_clause;}
function alyssaSqrtIter(guess, x) { return conditional( isGoodEnough(guess, x), guess, sqrtIter(improve(guess, x), x) );}
However, This function won’t work because when the conditional(a, b, c)
function been called, all three arguments will be evaluated immediately thus make the program stuck in a infinite loop.
Exercise 1.7
Optimizing square root function by comparing the current guess with the previous guess:
function sqrtIter(guess, x) { return isGoodEnough(guess, x) ? guess : sqrtIter(improve(guess, x), x);}
function isGoodEnough(guess, x) { return Math.abs(guess ** 2 - x) < 1e-3;}
function improve(guess, x) { return average(guess, x / guess);}
function average(x, y) { return (x + y) / 2;}
function sqrt(x) { return sqrtIter(1, x);}
Improved iteration function:
function improvedSqrtIter(guess, x, prevGuess) { return improvedIsGoodEnough(guess, prevGuess) ? guess : improvedSqrtIter(improve(guess, x), x, guess);}
function improvedIsGoodEnough(guess, prevGuess) { return Math.abs(guess - prevGuess) < 1e-3;}
function improvedSqrt(x) { return improvedSqrtIter(1, x, 0);}
console.log("\n==========Exercise 1.7==========");console.log("Calculate the square root of 0.0001");console.log("old method result", sqrt(0.0001));console.log("improved method result", improvedSqrt(0.0001));
output:
Calculate the square root of 0.0001old method result 0.03230844833048122improved method result 0.010000714038711746
Exercise 1.8
Implement cubic-root function with the formular:
function cubicRootIter(guess, x, prevGuess) { return isCubicGoodEnough(guess, prevGuess) ? guess : cubicRootIter(improveCubicRoot(guess, x), x, guess);}
function improveCubicRoot(guess, x) { return (x / guess ** 2 + 2 * guess) / 3;}
function isCubicGoodEnough(guess, prevGuess) { return Math.abs(guess - prevGuess) < 1e-3;}
function cubicRoot(x) { return cubicRootIter(1, x, 0);}
console.log("\n==========Exercise 1.8==========");console.log("The approx. cubic root of 8: ", cubicRoot(8));console.log("The approx. cubic root of 27: ", cubicRoot(27));
output:
==========Exercise 1.8==========The approx. cubic root of 8: 2.000000000012062The approx. cubic root of 27: 3.0000000000000977